
+

A Wiring and Processing
workshop to read and
visualize data

A Wiring and Processing workshop
to read and visualize data

Sensing for Visualization is an introduc-
tion to analog sensors and interactive
graphics visualization. It includes cir-
cuit designs and programs to get started
capturing data from the outside world.
Reading data from our environment can
be useful to create sensible interfaces
that respond to our presence.

The analogue sensors covered in this
workshop will be: photocell, potentiom-
eter, switch and accelerometer. This sen-
sors respond to light variations, touch,
movement and orientation. Using inex-
pensive microcontrollers (Wiring/Ar-
duino), electronic components and open
software, you can prototype circuits to
read meaningful data from the environ-
ment.

-1-

1.Functions
Before we start using the Wiring analog inputs, lets review some
of the programming elements. In Processing, the syntax is almost
identical to Java, but processing adds special features related to
graphics and interaction.

1. Download the Processing IDE visiting
 www.processing.org/download
 At the bottom of the page, choose to download
 Processing 3

2. Install program and open it

You can type commands to easily draw images on the computer
screen by using predifined graphic functions such as ellipse() and
rect(). Each function is conformed by its name and parameters.
This processing function below draws an ellipse on the screen
using the points (50,50) as center and a dimension of 80 by 80.

-2-

You don’t need to memorize all the processing functions, but you will
become familiar as you use them. The most helpful part is that you can
find the meaning of the specific syntax in the Processing’s reference
(http://processing.org/reference/). From the reference we learn that:

 ellipse(x, y, width, height);

2.Variables
The parameters from our functions can be changing numbers instead
of fixed ones. These results can be used to create interactive systems
that respond to a user’s input. Taking in consideration that each param-
eter can be a variable that changes in time, we can alter graphics char-
acteristics such as the size, the position, the color among many other
properties.

-3-

Color variables (values
range from 0-255)

tint(R,G,B,Alpha);
fill(R,G,B,Alpha);

You will need to install the software that allows the com-
puter to communicate with your Arduino/wiring board.
To allow your Arduino Mega board read variable data in
processing, you must first complete the following steps:

1. Download the Arduino IDE visiting
www.arduino.cc/download

2. Install the Arduino.exe file. This will include the
drivers and software

3. Run the Arduino IDE for the first time and plug in
your board to the USB port

4. In the tool bar go to: file / examples/ Firmata/
AllinputsFirmata

5. Chose your board (Arduino Mega 2560)and Serial
port (should be the one starting with /dev/.../usb...)

6. Click on the “Upload” button

-4-

3.Wiring/Arduino + Processing

Now let’s run Processing 3
1. Go to the menue Sketch/import Library/Add Library and choose

“Arduino”

2. Run the application by pressing the “Play Button”

-5-

click on “Install”

4.Reading Analog Data

-6-

Photocell

Analog Sensors

Depending on your choice to interface with the
environment, you can use different sensors.
The photocell is sensitive to light, the poten-
tiometer is a knob, and the accelerometer re-
sponds to it’s inclination. In all these cases, the
user is manipulating data, and the data can be
meaningful for creating user experiences. We
assume that environment variables can be also
computer variables or parameters, and there-
fore used to manipulate values in the screen.

Every sensor has a different behavior, but
when we read physical data in the computer we
will have numbers. These numbers can be used
as parameters of a computer program. The
numeric values that the computer can read is
an interval between 0 – 1023. We will use this
interval as a range of variability.

Button
Switch

Potentiometer

Jumper wiresPIR motion
sensor

-7-

5.Visualizing one variable
 Build the circuit below:

* You may replace the connection A-B with a potentiometer or a
switch

-8-

Copy and paste the following code in processing:

The variable “val” is the numeric value captured by the photocell.
The function wiring.analogRead(4) means that wiring reads the ana-
log port #4 on your board. The function pritln(); allows us to se the
true numeric value of “val.” Now the ellipse moves along the x-axis
of the screen because of ellipse(val,250, 10,10);

-9-

6.Calibration
Using the function map(); we can adjust the range of the maximum
and minimum values of our sensor. Depending on the context it won’t
always be 0-1023.

value= map(val, 0, 1023, 0, width);

The desired range can be the size of the screen for example, therefore
we use the variable width. The new code with the map(); function
added will be:

Input range from analog read

Output range desired

-10-

7.
A

cc
el

er
om

et
er

C
an

 y
ou

 c
re

at
e

a
pr

og
ra

m
 th

at
 re

ad
s 3

 v
ar

ia
bl

es
 a

t t
he

 sa
m

e
tim

e?
 H

ow
 w

ou
ld

yo

u
al

te
r y

ou
r v

is
ua

liz
at

io
n?

 U
se

 th
e

sa
m

e
co

de
 a

dd
in

g
ne

w
 v

ar
ia

bl
es

.

-11-

8.Programming Objects
Another of the element that may play importance while using
graphics is the concept of a programming “object.” A programming
object is related to real objects in the sense that they have specific
charactersitscs.
Say a pencil...
• Is yellow
• It’s 7 inches
• Has an eraser

In the same way, every “object” in programming has different prop-
erties. You can change the size, position, hue and many other prop-
erties by applying variables to each individual object.

In programming we can “call” the characteristics (or properties) of
the objects and use them as variables. Objects can be movies, bit-
maps vectors, sounds, etc. For raster graphics, we use the PImage
object:

PImage b; //creates the object
b = loadImage(“mar.png”); // assigns a file to that image object

image(b, 0, 0); // the function image draws “b” in the screen point (0,0)

We can also explore more in the reference to learn about the properties
of the image object. In the case of the image, the syntax explains:

image(img, x, y, width, height, opacity)

To access the object’s properties we use “.” To refer to that object
for example the width of image b is noted as “b.width”
Experiment in processing bringing images and modifying their
properties using the following code. Remember to save image in the
“data” folder of the same sketch.

-12-

PImage a; //creates the object a

void setup() {
 size(800, 600);
 a = loadImage(“name of your image.png”);
 }

void draw() {
 image(a,400, 300, a.width*val, a.height*val);
 }

Can you change the size of an image using the potentiometer or
accelerometer?
The expression a.width*val takes the original width of the image
and multiplies the size by the value of the variable “val”

-13-

Sensing for Visualization:
A Wiring and Processing work-
shop to read and
visualize data

Created by Esteban García Bravo
Revised in 2016 for BPViz

Acknowledgements

Thanks to Hernando Barragán for his work developing Wiring. He rev-
olutionized the practice of electronic art and made physical computing
more approachable. Wiring-based hardware has become ubiquitous for
hobbyists and engineers alike. To learn more about the history of Ar-
duino and Wiring visit: https://arduinohistory.github.io
At school in Colombia, Hernando taught us that programming is a lot
of fun. The Wiring website includes extensive documentation and ex-
amples of this project. For more information visit www.wiring.org.co
Wiring is © 2011 Hernando Barragán, Brett Hagman and Alexander
Brevig.

BROADENING & PARTICPATION IN VISUALIZATION

CRA-W

